As marketers in 2020, there's one major thing that we have in common: We're driven by data.
Regardless of whether we're copywriters, social media managers, videographers, or web designers, data is key to helping us determine which projects are successful, which strategies might require more of a budget, and which tactics we need to leave behind.
But those who thrive on data also know its one major downfall: it can take hours to collect and organize.
Even if you have an analytics software that tracks a campaign's traffic, engagements, ROI, and other KPIs, you'll likely still need to take time to organize these numbers, analyze them, and come up with an understandable way to report on your projects to your team or clients.
In the past, marketing firms and agencies tasked full-timers with reporting-related duties. And, although much of the data collection process has been automated by various analytics software, marketing teams and firms are still losing countless hours on manual data reporting.
This is a problem that my Cleveland-based marketing firm, PR 20/20, ran into a few years ago.
As part of our process, we create monthly performance reports for each of our clients. When we create them, we pull the data from HubSpot and Google Analytics. Then, we write a report to explain the data to our colleagues, clients, and project stakeholders.
These reports allowed our clients to make better sense of the numbers they were seeing and formulate their strategies around where they performed well or needed improvement. But, although they were helping our clients, creating them was holding our team back.
While our clients found the reports valuable, the process of pulling the data, analyzing it, and drafting the reports easily took five hours per client, per month. This took our marketers away from tasks that could have been productive in the long run, such as brainstorming new ideas and strategies that could noticeably help their clients.
In this blog post, I'll walk you through how to streamline reporting with AI, using our own experiment as an example.
How to Streamline Your Reporting Processes with AI
Step 1: Research your AI software options.
Whenever you're attempting to experiment with or implement a new strategy, you'll want to research the topic thoroughly.
For example, you'll want to recognize your budget and then look into software that fits into it.
You'll also want to determine the pros and cons of any software you consider. This will help you better familiarize yourself with the world of AI and which tools can actually help you. Because the topic of artificial intelligence comes with a lot of online hype, thorough research will also help you to distinguish which products are actually worth investing in and which are overhyped and overpriced.
Prior to deciding that we wanted to streamline our reporting strategy, we'd been researching AI through resources at our Marketing AI Institute.
The Institute is a media company that aims to make AI more approachable for marketers. Since we launched the company, we've published more than 400 articles on AI in marketing. We're also tracking 1,500+ sales and marketing AI companies with combined funding north of $6.2 billion.
After learning about how AI had already streamlined dozens of marketing-related processes, we decided to explore how automation and artificial intelligence could help us with our clients at PR 20/20.
We became obsessed with how smarter technology could increase revenue and reduce costs.
In the process, we found natural language generation (NLG) technology that wrote plain English automatically.
Essentially, NLG takes structured data -- such as information on spreadsheets -- and turns it into written or spoken language. You've encountered NLG anytime you've used Gmail's Smart Compose feature. Or, when you hear Amazon's Alexa respond to your voice queries.
Once we discovered a potentially helpful NLG software, we decided to run an experiment to see if the AI technology could partially or fully automate our performance report writing process.
2. Pick software that works best for your team.
After doing your research, you might learn the basics of how AI technology such as machine learning or NLG works.
Now, the next step is to search for software that works for your business. Here are a few things you'll need to consider:
- The cost: You'll want to consider the cost of any of the software's subscriptions or fees, as well as the cost to implement it. For example, you may need to contract or hire an engineer to prepare your data and take any steps to make sure the software works smoothly.
- Maintenance needed: While higher-priced software might be intuitive enough to require lower maintenance, others may need to be monitored and updated by someone who's very tech-savvy. Be sure to understand what you'll need to do if something isn't working properly so you don't incur any emergency costs.
- Usability: As a marketer, you won't want to rely on a full-time engineer to use AI software to run your reports. You'll want to shop for software that your less tech-savvy team members can eventually get trained on and learn. For example, a software that lets you adjust your settings or make basic adjustments in an easy to understand dashboard will be effective for multiple team members and require fewer software experts to manage.
As you pick out software, you'll also want to track down case studies, reviews, or user testimonials that describe how a company used the software to run reports or complete a similar activity. This will give you an idea of if the product you're considering has a good track record or credibility in the AI software industry.
When it comes to finding affordable AI-powered software, there are a number of service providers that similarly use NLG to draft analytics reports or generate dashboards that you can then share with your clients or stakeholders. Here are two highly-regarded examples: